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We numerically study the influence of neuronal threshold modulation on the properties of cortical traveling
waves. For that reason we simplify a Wilson-Cowan-type integrodifferential equation model of propagating
neocortical activity to a spatially discrete version. Further we introduce a noisy threshold. Depending on the
noise level we find different states of the network activity, ranging from asynchronous oscillations, traveling
waves, to synchronous oscillations. Finally, we induce the transition between these different states by an
external modulation.
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I. INTRODUCTION

A common feature of locally coupled excitable media are
traveling waves; accordingly they are observed in physical
�1�, chemical �2�, and biological �3–5� systems. There are
several mathematical models describing experimental ob-
served dependence of traveling waves on the system param-
eters �6–8�, like the threshold. A recent work verified the
theoretical prediction that modulation of neuronal threshold
with electrical fields can increase, decrease, and even block
traveling waves in cortical slices �3,4�.

A biological example for the occurrence of traveling
waves is the deep sleep of mammalians �5�. During most of
non-REM �NREM� sleep, almost all cortical neurons un-
dergo a slow oscillation in the membrane potential, switch-
ing between a silent hyperpolarized state, and active depolar-
ized state of high frequency firing �5,9�. This repetitive
change between a depolarized active state and a hyperpolar-
ized silent state occurs, due to the interplay of intrinsic ion
currents, in neocortical neurons and network interactions
�5,10�. Further cortical slow waves can be generated and
sustained by the cortex alone �5,11�. This allows us to study
the mechanisms generating cortical slow waves and their ex-
citation in an isolated model for cortical activity. Although
slow waves, a striking feature of mammalian NREM sleep,
are well studied, only little is known about how they are
generated in the cortical network and how to enhance them
by external signals.

As cortical slow waves contribute to the long-term con-
solidation of new memories �9,12�, an enhancement of slow
wave sleep should help to increase consolidation of previ-
ously learned tasks. In a recent study it was shown that tran-
scranial application of slowly oscillating potentials
�0.75 Hz�, during emerging slow wave sleep, enhances de-
clarative memory performance �9�. Studying open-loop con-
trol of cortical slow waves by threshold modulation, might
lead to more efficient control signals, and finally improve
efficiency of transcranial electric stimulations in clinical ap-
plications.

The paper is organized as follows: As numerical simula-
tions of neural systems require spatial discrete networks, we
will simplify a Wilson-Cowan-type integrodifferential equa-
tion model of propagating neocortical activity, introduced by
Pinto and Pinto-Ermentrout, to a spatially discrete model. In

a second step we verify by a numerical simulation, that our
simplified model reproduces the threshold dependence of the
wave propagation speed in the Pinto-Ermentrout model. Ad-
ditionally, we introduce a noisy threshold and study the in-
fluence of noise on the coherence of a single element and the
activity in a one-dimensional �1D� ring. Further, we study
wave propagation and coherent oscillation on a two-
dimensional �2D� network. Finally, we modulate the thresh-
old periodically and show how to induce synchronous oscil-
lations in the 2D network.

II. TRAVELING WAVES IN A SPATIAL
DISCRETE MODEL

Experimentally acquired electroencephalography �EEG�
data of slow wave oscillations show only the average activity
of populations of neurons and give no information about
biophysical details such as the spike form or the kinetics of
the intrinsic ion currents. Following Freeman �13� and Wil-
son and Cowan �14� we assume that the functional units of
the single brain regions consist of populations of neurons and
not of single neurons. The neurons in these populations pos-
sess a high connectivity and have a quite similar response to
similar inputs. This redundance allows one to study networks
of neuron populations. Here the single variables do not de-
scribe membrane potentials of single neurons but rather the
average activity of a population of neurons. A very important
model of the averaged cortical activity was developed by
Wilson and Cowan �14�. In a recent work by Pinto and Er-
mentrout �3� this model was modified to represent traveling
pulse propagation in the disinhibited neocortex. The Pinto-
Ermentrout model is given by

u̇�x,t� + u�x,t� =� dx�w�x − x����u�x�,t� − �� − v�x,t� ,

v̇�x,t� = �u�x,t� , �1�

where w�x−x��=e−�x−x��/2 and � is the Heaviside function. As
all real neural networks consist of single elements, i.e., the
neurons, a continuum model is only valid for very large neu-
ral populations. Therefore a natural way to describe the dy-
namics is a discretization of Eq. �1�,
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ui
˙ + ui = �

j

Wi,j��uj − �� − vi,

vi
˙ = �ui, �2�

where Wi,j is a normalized, towards periphery declining
function. Now we go one step further and reduce the cou-
pling function to a nearest neighbor coupling,

Wi,j ª �A: i = j

C: �i − j� = 1

0: else,

�3�

where C represents the coupling strength. Figure 1 shows
that our spatial discrete model qualitatively reproduces the
dependence of the traveling wave’s velocity of propagation
c��� on the threshold �.

III. NOISY THRESHOLD

Each neuron is under the influence of multiple sources of
noise, e.g., synaptic noise, channel noise, and Johnson noise

�15�. Mostly neuronal activity is described by stochastic dif-
ferential equations with an internal noise in the form of a
fluctuating input current. Here we will study the influence of
a noisy threshold as done before in Refs. �16,17�. The thresh-
old noise represents the propability that the population can
fire even when the activity has not reached the threshold yet
or stays quiescent even though the activity is above the
threshold �18�. Contrary to what happens when the noise is
added to the input current, fully white Gaussian noise cannot
be applied. Moreover, the Gaussian distributed white noise
term �i�t� will be updated every �t times, which leads to the
random innovations D�i�tn�. Because of the discrete update
the sequence �i�tn� is somehow colored �19�. But, for �t
=0.1, which is two orders of magnitude lower than the time
constant of our model, the coloring of the �i�tn� can be ne-
glected. The threshold � then becomes �0+�i�tn�, where
�i�tn� are the Gaussian white noise innovations with zero
mean and intensity D.

A. Dependence of the collective behavior in a 1D network
on the noise intensity

In order to measure the influence of noise on the collec-
tive dynamics of the network, we observe the dependence of
the squared fluctuation �2 of the mean field on the noise
intensity D.

�2
ª 	�u�t� − 	u�t�
�2
 , �4�

u�t� ª
1

N
�

i

ui�t� . �5�

Figure 2 shows the squared fluctuation over D for different
values of �. We see a pronounced maximum at D��, indi-
cating that the network shows coherent oscillations.

Considering a single element, we find that for small and
for large noise the spikes appear irregular while the system
oscillates coherently for moderate noise ��D. This effect
was first described in �20� for a single excitable system and
is called coherence resonance. We will discuss this interest-
ing case for a single element later.

B. Dependence of the collective behavior of a 2D network
on the noise

In �4� it was shown that applying electrical fields on a
neural tissue, leads to effects which can be described by a
threshold modulation. For that reason we study the depen-
dence of the collective behavior in a two-dimensional net-
work with periodic boundaries on the noise intensity D and
the threshold �. We display the different states in a phase
diagram as shown in Fig. 3. We find three different states
which can be walked through by tuning either the noise in-
tensity or the threshold of the single element. In the traveling
waves possible state, an external induced traveling wave can
propagate through the network. Up to a certain intensity the
noise supports the traveling wave; that means the wave
propagates even for large values of � �solid line in Fig. 3�.

In the traveling waves state the noise occasionally excites
a single element, which starts a traveling wave that can
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FIG. 1. �Color online� �a� Traveling wave in a 1D network with
periodic boundaries. The wave propagates in both directions. Be-
cause of the periodic boundaries the wave fronts meet each other
and eliminate themselves. �b� The threshold dependences of the
velocity of wave propagation in a 1D network for the Pinto-
Ermentrout model �blue/dotted� Eq. �1� for �=0.2, compared to the
spatial discrete model, Eq. �2�, with a nearest neighbor coupling,
Eq. �3�, for N=100 elements with A=0.4, �=0.2, and C=0.3 �red/
solid�, respectively, C=0.4 �green/dashed�. The characteristic shape
of c��� stays qualitatively the same.
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propagate stably �dashed line in Fig. 3�. In the oscillatory
state the whole network oscillates synchronously. On the
transition from the traveling waves state to the oscillatory
state the frequency of the traveling wave occurrence rises
until the traveling waves occur with resonance frequency
where the whole network starts to oscillate synchronously.

C. Influence of noise on the wave propagation

As seen in Fig. 3, with noise a wave can propagate even
for values of the threshold where no traveling waves are
observed in the deterministic case. A similar effect was ob-
served experimentally in �21� in subexcitable chemical reac-
tions. Here we are mainly interested if the influence of noise
only increases the maximal threshold where waves can still
propagate or if it also increases the wave propagation speed
c���. At a first glance, this seems to be reasonable, as in our
model the wave propagation speed c��� depends sensitively
on the threshold. The numerical simulation in Fig. 4 shows
that the noise not only increases the maximal threshold
where waves can still propagate, it also increases the wave

propagation speed. Physically the noise acts as a threshold
reducer and as such enhances traveling waves.

D. Noise-induced coherence

The phase diagram shows that coherent oscillations in the
network can arise by tuning the noise intensity D. This be-
havior was studied in several works for global coupling
�22,23�. Here we show numerically that it also occurs with
local coupling. We advert that this order is achieved by in-
creasing the intensity of the independent local noise and not
by an external periodic forcing as in the case of stochastic
resonance. Further, it does not depend on an additional con-
stant drive or the oscillatory nature of the elements.

While the stochastically driven single elements of our net-
work show coherence resonance, the deterministic system
does not show self-sustained oscillations but noise of an op-
timal intensity generates a quasiregular signal. Such noise-
driven excitable systems are often considered as coherence
resonance oscillators �23�. To explain the influence of noise
on the network we first study the influence of noise on the
single element. For this purpose we use two different mea-
sures. As a measure for the temporal order in the single ele-
ment we use the characteristic correlation time �20�

	c ª �
0

T

C2�t�dt ,

where C�t� is the normalized autocorrelation function. We
integrate up to T=1000 instead of T=
 to prevent diver-
gence in case of a periodic signal. A simple sine wave would
have the correlation time 	c=500. As a measure for the spa-
tial coherence in the network we use the squared fluctuation
of the mean field. The simulation shows that the synchroni-
zation occurs at the same noise intensity as coherence reso-
nance in the single element �Fig. 5�. As in a previous work
shown for Hodgkin-Huxley neurons, the coherence reso-
nance �CR� is enhanced in two different ways depending on
the coupling �24�. For weak coupling only the single element
shows CR and no spatiotemporal order is observed. For
strong enough coupling, as shown in Fig. 5, the maximum of
the local and global coherence measure both jump to a maxi-
mum at almost the same noise intensity, indicating spa-
tiotemporal coherence in the network. The reason for that
observation is that by the coupling the noise-induced limit
cycles stabilize and thus synchronize.

The application of homogenous noise on our network
would lead to an identical behavior of all elements. There-
fore a single uncoupled element �with an adjusted self-
coupling� shows the same behavior as the mean field. As
shown in Fig. 5�a�, the correlation time of a single element is
much less than the correlation time of a network with het-
erogeneous noise. The mutual stabilization of the noise-
induced limit cycles cannot take place if all elements behave
exactly the same. For that reason we expect a similar in-
crease as the synchronization with rising noise heterogeneity
as shown in �25�. This should also apply to the demonstrated
increase of synchronization with rising parameter heteroge-
neity.
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FIG. 2. �Color online� The squared fluctuations of the mean field
of a 1D ring consisting of 100 units. �a� The simplified model with
�=0.2, A=0.4, C=0.3. �b� The Pinto-Ermentrout traveling wave
model with �=0.2. Both for �=0.1 �red/solid�, �=0.15 �green/
dashed�, and �=0.2 �blue/dotted�. The mean-field fluctuations of
both show a strong a maximum at ��D, indicating a coherence
resonance of the collective network dynamics.
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IV. THRESHOLD MODULATION

We modulate the threshold with a square wave and ob-
serve the influence of the modulation ��t� for the different
network states. With the modulation term the Heaviside
function in Eq. �2� becomes

��uj�t� + �i�t� + ��t� − �0� .

We find that the length of the positive and negative parts of
the modulation are of minor importance while the resonance

frequency always shows the most effect. Besides the square
wave modulation we modulate with only the positive part—
and only the negative part of the square wave �Fig. 6�.

For small D �traveling wave and traveling wave possible
state� the modulation barely increases the squared fluctuation
more than a simple constant threshold modulation. Also the
negative modulation has no influence on the oscillation; the
positive and the symmetrical modulation show nearly the
same effect.

For large noise, however, the squared fluctuation can be
increased strongly by square wave modulation, while simple
constant modulation has nearly no effect. The negative
modulation is less important than the positive modulation,
while the square wave has the largest effect.

V. CONCLUSION AND OUTLOOK

We showed that the Pinto-Ermentrout traveling wave
model can be simplified to a spatially discrete network with
nearest neighbor coupling, without losing the main feature—
the characteristic shape of c���. Introducing a noisy thresh-
old we found that the network shows pronounced coherence
resonance. Extending the model to a two-dimensional net-
work we showed in a phase diagram the dependence of dif-
ferent network states on the noise intensity and the threshold
height. The transition from silent network to self-induced
traveling wave to coherent oscillation state can be achieved
by either tuning the threshold or the noise intensity. Further-
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FIG. 3. �Color online� �a� The phase portrait
for an 100*100 network with �=0.2, A=0.4, C
=0.3, and periodic boundary conditions. The
color indicates the size of the squared fluctuation:
below the red �solid� line traveling waves are
possible �traveling waves possible state�, and be-
low the blue �dashed� line traveling waves are
induced by noise automatically �traveling waves
state�. �b� The oscillation of the mean field for
�=0.2 and D=0.2. �c� Noise induces traveling
waves for �=0.38 and D=0.18.
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FIG. 4. �Color online� c��� for a 50*50 network with A=0.4,
C=0.3, �=0.2, and periodic boundary conditions. The wave propa-
gation speed and the maximal threshold where wave propagation is
possible increase with the noise intensity D.
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more, the wave propagation speed and the maximal threshold
where wave propagation is possible increase with the noise
intensity. For small noise intensities a threshold modulation
with a periodic signal has nearly the same effect as threshold
modulation with a constant signal. For larger noise intensi-
ties, however, a constant threshold modulation has no effect,
while symmetric, positive, and negative modulation increase
the oscillation of the network.

In future we will investigate the influence of the coupling
range, asymmetric coupling, and network architecture on the
different network states. In future works the noise-induced
phase transition—shown in our model—will be investigated
in chemical and biological systems.

For instance, the threshold and noise level dependence of
the network states and the wave propagation speed can be

examined with an experimental setup similar to that in �4�.
With a high density electrode array �26�, threshold height
and noise intensity can be tuned individually. Another
method to tune the noise intensity is to vary the temperature
of the tissue �15,27�, however, this is only possible in a cer-
tain range as the tissue will be damaged otherwise.
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FIG. 5. �Color online� �a� The correlation time 	c for the mean
field �red/solid�, a single element �green/dashed� in the 50*50 net-
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